jueves, 1 de diciembre de 2016

DISTRIBUCIÓN BINOMIAL

Es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.

Un experimento sigue el modelo de la distribución binomial o de Bernoulli si:

1. En cada prueba del experimento sólo son posibles dos resultados: el suceso A (éxito) y su contrario suceso contrario.

2. La probabilidad del suceso A es constante, es decir, que no varía de una prueba a otra. Se representa por p.

3. El resultado obtenido en cada prueba es independiente de los resultados obtenidos anteriormente.

La distribución binomial se suele representar por B(n, p).

n es el número de pruebas de que consta el experimento.

p es la probabilidad de éxito.

La probabilidad de suceso contrario es 1− p, y la representamos por q.
Resultado de imagen para Distribución binomial

No hay comentarios.:

Publicar un comentario